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INTRODUCTION 

Self-oscillations exist in a viscous fluid as an intermediate mode in the transition 
from parallel laminar to turbulent flow. 

The conception of the origin of turbulence as a sequence of laminar flows displacing 
each other and being more and more complicated was developed by Landau [I]. Excitation of 
new degrees of freedom hence occurs because of the loss of stability of the initial simpler 
mode. 

Periodic self-oscillations in the homogeneous variable are the first mode in this se- 
quence replacing the plane-parallel stationary stream. The existence of such self-oscilla- 
tions was proved as a solution of the Navier--Stokes equations,which branches off from the 
stationary solution by Yudovich [2]. 

The branching off occurs at Reynolds numbers Re corresponding to points of the neutral 
curve according to linear stability theory. Adefinite spatial period and frequency of 
the self-oscillations originating corresponds to each such point. 

An investigation of the nonlinear stability of Poiseuille flow in a plane channel [3] 
showed that a self-oscillating mode which exists for Re < Re, branches off at the critical 
Reynolds number Re, = 5772 (determined by the nose of the neutral curve). On the other hand, 
energy estimates show [4] that any deviation from the plane-parallel mode for Re < 50 will 
damp out monotonically with time (energy-wise) and experimental results indicate that tur- 
bulence is realized only for Re ~ 1000 . Therefore, Poiseulle flow at low Reynolds numbers 
is stable to any perturbations of arbitrarily high initial energy (absolutely stable), is 
unstable with respect to infinitesimal perturbations (absolutely unstable), and is metastable 
in a definite range of Reynolds numbers (1000 <Re < 5772, i.e., is stable to perturbations 
whose energy is below the threshold value, and unstable to perturbations with a sufficient- 
ly high initial energy). 

Self-oscillations correspond to definite finite values of the perturbation energy in the 
domain of parallel flow metastability and are periodic stationary solutions, on the average, 
of the Navier--Stokes equations. But under these conditions the self-oscillating solutions 
are themselves unstable, and hence under sufficiently large perturbations the stream evolves 
furtheralthough no developed turbulent mode is built up. Since this evolution is spread 
out in time, it is difficult to observe experimentally. 

In this sense, the flow in a boundary layer differs profitably from flow in a channel, 
since the transition to turbulence is spread out spatially downstream and all the stages can 
be followed in sequence. 

Test data indicate [5] that the Blasius flow is replaced by a self-oscillating mode 
(Tollmien--Schlichting waves) downstream (for Re > Re, according to linear theory) in the 
flow around a flat plate. The amplitude of the self-oscillations gradually grows and an 
abrupt transition to the turbulent flow mode occurs for Reynolds numbers almost an order 
greater than Re,. 

The self-oscillating mode was observed most clearly in the Schubauer and Skramstad tests 
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[6], where the oscillations were initiated by vibrating strips. The self-oscillations are 
even tracked in the "natural"transition on a flat plate under weak external turbulence 
conditions, as experimental investigations [7, 8] indicate. A frequency analysis of pulsa- 
ting motion showed that in the background of a comparatively homogeneous energy frequency 
distribution in the initial noise the intensities start to grow downstream for frequencies 
from a band corresponding to the inner domain of the neutral stability curve. The intensity 
at these frequencies exceeds the mean external noise intensity severalfo!d and the band of 
isolated frequencies itself varies, being aligned under the neutral curve. These data in- 
dicate the existence of stable self-adjusting oscillations in a definite Reynolds number 
band. Within the framework of the plane-parallel approach, the amplitude and frequency are 
established as a result of nonlinear interaction. 

This paper is devoted to a theoretical analysis of the conditions for origination and 
the character of these self-oscillations for boundary-layer flow with an imposed pressure 
gradient. 

i. Let us examine flow along a wedge. The potential flow velocity at the wedge sur- 
face is proportional to the power of the distance from the apex 

In this case the boundary-layer equations for a viscous incompressible fluid admit of 
self-similar solutions [5] for the stream function 

f o ~ / f m + l U ~  

where x and y are the longitudinal and transverse coordinates, respectively, u is the coef- 
ficient of kinematic viscosity, and m = (x/U~)/(dU=/dx) is the flow-form parameter, related 
uniquely to the wedge apex angle. The values m > 0 correspond to a positive wedge angle, 
and the pressure gradient is hence negative. The values m < 0 correspond to flow in a dif- 
fusor, the pressure gradient is hence positive, and boundary-layer separation occurs for 
m = --0.0904. 

The function ~0(~1) is a solution of the Falkner--Skan equation 

2m. (t '~" ,; '  + + , -  - 4 0  ) = o;  

q ' ~ o = ~ : ; = O  for r i c O ;  ~ ) ; =  t for v I =  co. 

If the x velocity component is referred to its value on the outer boundary of the boundary 
layer, then the velocity profile is given by the expression U(~)=~0 , where the prime de- 
notes differentiation. 

The stationary-flow perturbations are analyzed within the framework of the plane-parallel 
approximation. This means that for each Reynolds number defined as Re = (U~6,/v) (where 
6, is the displacement thickness), the flow is approximated by a one-dimensional parallel 
stream with velocity profile U(y). The transverse velocity component is assumed zero. 
Within the framework of this approximation, the perturbed motion stream function satisfies 
the equation 

Ot + U'-~-x - -  Ox Re Ox Oy oy Ox 

(A is the Laplace operator) with boundary conditions of adhesion to the wall and the require- 
ment of minimum growth as y-+~ . Use of the plane-parallel approximation induces a definite 
error in the analysis of origination of the self-oscillations. However, it may be hoped that 
the plane-parallel approximation will permit a qualitatively true description of the branch- 
ing off of the self-oscillating solutions. 

The linearized equation (i.I) has the spectrum of solutions periodic ~in x and t which 
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is given by the neutral curve. Following [3], let us select an arbitrary point on the neutral 
curve corresponding to the Reynolds number Ree, let us give the Reynolds number an incre- 

men t 

Re= R%§ ] =  _+ l 

and let us seek the solution (i.i) as a series in the small parameter e: 

o~ oo  

~ = ~-gek=ii ~ e~a~(x__ct, y); Rec  = R% k=0 -~ c~e~" ( 1 . 2 )  

Substituting (1.2) in (i.i) and equating the coefficients of ek to zero, we obtain the chain 
of equations 

I [ ,0 0 ,,i - n % u ( U - c o ) - ~ - - u  ~ = /  u ~ a~ j+~t~0-F- ox ~ ay ] '(1.3) 

For k = 1 t he  member i n  t h e  e x p a n s i o n  ( 1 . 2 )  has  t h e  form 

*l(X--ct, y)=~ {~(y) exp [ia(x--ct) l+~(y) exp[--ia(x--ct)]} 

(the bar denotes the complex conjugate), where the complex amplitude ~(y) 
Orr--Sommerfeld equation 

L=cp--=-(pxv~2(z2~ ''-~-(x4(p- iaRe [(U--co)((p"--(z~(p) - U" (pl = 0 

is a solution of the 

(1.4) 

with the boundary conditions T=~'=0 at y = 0 and the requirement that ~(y) decreases at 

infinity. 

It can be seen that the damping of T(y) as y~ will be exponential in nature. Indeed, 
it can be assumed that U" = 0 and U = i for sufficiently high y. Then (1.4) becomes an 
equation with constant coefficients and its solutions, which damp out as y-+~, are 

where 

(p=C1 exp (~ay)-~-C2 exp (~7Y), 

7 = 7,.-!- i7~; 7r -- "/V a-~-Va2+bz" 2 

a = a  2, b=aReo(i--co). 

, 7~ = r27--' 

(1.5) 

The exponential nature (1.5) of the damping of 

ary conditions 

( ~ " - ~ ) ' + 7 ( ~ " - ~ ) = o ;  

(~'--~2~)'+~(~"--~)=0, y=A, (1.6) 

which should be substituted for sufficiently large y. h finite ~ange of values O<y<A 
was considered in a numerical computation of the problem. The boundary conditions (1.6) 
were posed for y = A. The computations were carried out for increasing values of A until 
the results ceased to change. Thus when A doubled from 5 to i0, no noticeable discrepancy 

was detected. 

For k = 2 the number in the expansion (1.2) for the stream function is 

~(y) can be reflected in the form of the bound- 

~ _ = ~  { Vo(y)+ Vl(y) exp [2ia(x--ct) l+ Vl(y) exp [--2ia(x--ct)]}. 
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The function V~(y) should satisfy the boundary-value problem (1.4) with ~ replaced by 25 

and the introduction of the inhomogeneity 

L2z V I :  ia( ~'2--T~ ") '. 

The f u n c t i o n  Vo(y)  i s  s u b j e c t  t o  t h e  e q u a t i o n  V0 = i a ( ~ ' - - ~ ' )  and t h e  c o n d i t i o n s  Vo = Vo = 0 
a t  y = O. L e t  us  n o t e  t h a t  t h e  f u n c t i o n  Vo(y)  grows  l i n e a r l y  a s  y - + a ,  a l t h o u g h  t h e  r i g h t  
side of the equation damps out exponentially. But the stream function for the initial flow 
~0 also grows linearly, hence the ratio between the perturbed stream function and ~0 
will remain small. The derivatives ~2(x, g, t), which yield a contribution to the pulsating 
velocity field, hence remain finite. The condition of solvability of (1.3) for k > i is 
that c k equal zero for odd k. 

It follows from (1.3) that ~a will be the sum of harmonic oscillations with wave numbers 
and 3~. The condition of solvability of the equation for the amplitude of the first har- 

monic will be 

- -c~ReJ i  q- ~21~+/I3= O; 

[1 = 0 (g)(~" - -  ~2~) dg; f2 = t' 0 (g) Iv ;  (~t' - -  ~2~) _ _  

0 5 

I~ = ~ o (u) [u  (~" - ~ )  - u"~] @. 
0 

Here  0 ( y )  i s  t h e  s o l u t i o n  o f  t h e  p r o b l e m  c o n j u g a t e  to  ( 1 . 4 ) .  I n t e g r a t i o n  i s  o v e r  t h e  i n f i n i t e  
doman but the integrals converge because of the exponential damping of the integrands. The 
sign in (1.7) is selected such that the requirement B 2 > 0 is satisfied. 

2. Numerical computations were carried out using the method of differential factoriza- 
tion with a splice [9]. The neutral stability curve i for Blasius flow (m = 0) is shown in 
Fig. i. The arrows indicate where self-oscillating modes exist, the length of the arrows 
correspond qualitatively to the quantity OE/ORe, and their direction to the sign of this 
derivative. Here E is the self-oscillation energy and on the neutral curve 

OE 

0 

On the lower branch of the neutral curve OE/O~e>O , i.e., self-oscillations exist for 
Reynolds numbers greater than Reo in the domain of initial flow instability. On the upper 
branch the self-oscillations branch off into the domain outside the neutral curve where the 
initial stream is stable. The change in the sign of OE/ORe, which passes through zero at 
the point ~ = 0.356, Re = 774 has no value in principle, but is related to the change in 
orientation of the stability domain relative to the neutral curve. 

The critical Reynolds number for Blasius flow is Re, = 519 for ~, = 0.304. Somewhat 
above this point on the neutral curve OE/ORe becomes infinite and changes sign at ~ = 
0.31. This corresponds to a change in the mode of self-oscillation origination. It is 
important to note that OE/ORe>O, at the nose of the neutral curve, i.e., the self-oscilla- 
tions branch off towards high Reynolds numbers and are stable. 

The nature of the branching off at the nose of the neutral curve is of value in principle. 
If the excitation is hard, i.e., the self-oscillations branch off in the range of lesser 
values of Re, then the flow is metastable for Reynolds numbers less than the critical accord- 
ing to linear theory. In this case, a nonlinear critical Reynolds number less than the linear 
Re, exiSts for which self-oscillations of finite amplitude (or turbulence) can at once origi- 
nate first. Curve I in Fig. 2 reflects this situation. 

If the excitation is soft, i.e., OE/ORe>O , then for small perturbation amplitudes a 
stable self-oscillating mode exists which can be observed experimentally. The most typical 
situation in this case corresponds to curve 3 in Fig. 2. But the case described by curve 2 
can even be realized. If a family of straight lines corresponding to values of the derivative 
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~E/ORe at the points of the neutral curve is superposed, then curve 2 will be the envelope 
of this family for'small amplitudes. Then in a small range Re,Re, stable small self-oscilla- 
tions exist but they are metastable as is the initial flow. The nonlinear critical Reynolds 
number can hence be less than Re,. 

Such a case is most probable when the point at which 0E/SRe changes sign is close to the 
critical point on the netural curve and lies somewhat above it, as is realized for Blasius 
flow. It can be assumed.that the situation described by curve 2 in Fig. 2 holds here, where 
the critical values of the perturbation energy are small. 

The fact that Blasius flow is the boundary case in the sense of hard or soft perturba- 
tions of the oscillations is shown by comparing it with gradient flows. The case of a nega- 
tive pressure gradient at m = 0.0192 is represented by curve 2 in Fig. i. The critical param- 
eters are a, = 0.272, Re, = 759,and the point of the pole for OE/ORe is located at ~ = 

0.254, Re = 778. Therefore, the nose of the neutral curve lies in the hard excitation zone. 

The situation is the reverse for a positive gradient. The values m =--0.0882 and--O.0602 
correspond to curves i and 2 in Fig. 3. As the pressure gradient increases the pole point of 
OE/OHe shifts towards higher Re along the upper branch and, finally, vanishes by merging 
with the root of aE/OR~: for m close to the separation value. For m=--0.0882 the excitation 
is soft on the whole neutral curve (Re,=78.4; =,=0,662). 

Superposed in Fig. 4 as a function of m is 8Re,/0E at the point of the nose of the 
neutral curve. The hard nature of the excitation is realized for negative pressure gradients 

at m~0.00415. 

It is interesting to note that the hard nature of the excitation is reinforced as the 
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critical Reynolds number increases (see Fig. 4). This indicates that the nonlinear critical 
Reynolds number is more conservative than the linear relative to changes in the external 
parameters. The increase in Re, is associated with the greater filling of the velocity 
profile. As in the case of a Hartmann boundary layer or an asymptotic velocity profile 
with suction, this results in the possibility of delaying the laminar mode to higher Reynolds 
numbers on one hand, and to explosive-like excitation of the turbulent mode for sufficiently 
large perturbations, on the other. 

The critical Reynolds numbers are reduced significantly with the imposition of a positive 
pressure gradient, but the nature of the excitation of self-oscillations becomes soft. Here 
the situation is quite similar to the free convection case. After the loss of stability by 
the initial flow, a secondary laminar oscillating mode develops. Such oscillations are often 
observed behind poorly streamlined bodies. They precede the appearance of Ka'rman streets 
and the development of turbulence. 

Therefore, the analysis conducted of the excitation of self-oscillations agrees com- 
pletely with the phenomena observed in experiments. 

The authors are grateful to M. A. Gol'dshtik for attention to the research and discussion 
of the results. 
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